Tag Archives: hydraulic

China OEM Hot Sale High Quality Hydraulic Rubber Hose Sanyeflex Industry Equipment and Mining Machine Reasonable Price Tube Hose Fittings Couplings

Product Description

SANYEFLEX   Reliable Hydraulic Hose Manufacturer

Product Description

 

SAE 100R2 AT/DIN EN 853 2SN

INNER TUBE: oil-resistant synthetic rubber REINFORCEMENT: two high-10sile steel wire braid
COVER: abrasion and weather-resistant synthetic rubber
TEMPERATURE RANGE: -4ºC to +100ºC

 

Product Parameters

HOSE ID Wire OD Hose OD Working Pressure Burst Pressure Minimum Bend Radius Weight
Inch mm mm mm MPa Psi MPa Inch mm mm
3/16 4.8 11.1 13.4 41.4 6000 165 23720 90 0.31
1/4 6.4 12.7 15.0 40.0 5800 160 22840 100 0.33
5/16 7.9 14.3 16.6 36.0 5250 140 20000 115 0.39
3/8 9.5 16.7 19.0 33.1 4800 132 18840 130 0.50
1/2 12.7 19.8 22.2 27.6 4000 110 15720 180 0.59
5/8 15.9 23.0 25.4 25.0 3630 100 14280 200 0.71
3/4 19.0 27.0 29.3 21.5 3120 85 12280 240 0.86
1 25.4 34.9 38.0 16.5 2400 65 9420 300 1.28
1-1/4 31.8 44.5 48.3 12.5 1820 50 7140 420 2.02
1-1/2 38.1 50.8 54.6 9.0 1310 36 5140 500 2.23
2 50.8 63.5 67.3 8.0 1160 32 4560 630 2.85

Wrapped Surface Hydraulic Hose                                                                    Smooth Surface Hydraulic Hose

 

Application

 

Company Profile

ZheJiang CHINAMFG Fluid Technology Co., Ltd. is a China-US cooperative enterprise. SANYEFLEX has strong financial strength and technical strengths. Our factory occupies a total area of 110,000 square meters, with a plant area of 70,000 square CHINAMFG and a total investment of 65 million yuan. Our company has been deeply involved in the hydraulic hose industry for nearly 20 years. We have 2 technical research and development teams, and more than 40 on-the-job engineers are respectively dedicated to technical research in the field of hydraulic fluids and the development of refrigeration systems.
Our company specializes in the production of mid-high-end hydraulic hose series products, such as steel wire braided hose (American standard, German standard), steel wire spiral hose (American standard, German standard), metal hose, air pipe, and joints, and other products. With excellent product quality, perfect after-sales service, and reasonable prices, we gradually increase the market share of our products. Our products are widely used in mining, metallurgy, petroleum, construction machinery, and chemical industry, and are exported to more than 30 countries and regions such as the United Kingdom, the United States, Germany, South America, and Russia. The company adheres to the core values of “integrity-based, customer first”. Unswervingly promote the development concept of “leading by originality, developing talents, rooting in leanness, and bravely climbing the peak”. Carry out technical R&D and manufacturing closely around customer needs, provide first-class services to a broad audience, and strive to become an industry leader.

Factory tour

Packaging & Shipping

Why Choose SANYEFLEX?

  1. Specialized in hydraulic hose production research and development for 20 years, has rich experience and technology.
  2. Imported raw materials directly from the United States, Japan, and South Korea.
  3. Automatic mixer workshop.
  4. Using an intelligent production line fully automated transfer process.
  5. Each hose will pass strict inspection before delivery.
  6. Reliable product quality and high safety performance, reducing the cost of the enterprise.

FAQ

Q1:Can you do OEM?
A: Yes, we can do OEM products. Welcome!

Q2: Are you a factory or trading company?
A: Factory! We are a 100% manufacturer, and we have 20 years of experience in hydraulic rubber hose production. Welcome to visit our factory.

Q3: Is a free sample available?
A: Yes, free samples are available, customers only pay the freight cost.

Q4: How about your delivery time?
A: Within 20 days after you do the payment.

Q5: What are your terms of packing?
A: Generally in rolls well wrapped with colorful poly stripes or as your requirement.

Q6: What are your terms of payment?
A: Payment= 1000 USD, 30% T/T in advance, balance before shipment.

For more detailed product types information, please feel free to contact us! 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rubber coupling

Diagnosing and Troubleshooting Rubber Coupling Issues

Diagnosing and troubleshooting problems with rubber couplings in machinery systems involves a systematic approach:

  1. Visual Inspection: Check for signs of wear, cracking, or deformation in the rubber elements.
  2. Vibration Analysis: Monitor vibration levels using sensors to identify excessive vibrations or irregular patterns.
  3. Noise Assessment: Listen for unusual noises during operation, which could indicate misalignment or worn components.
  4. Temperature Check: Monitor the operating temperature of the coupling, as overheating might indicate issues.
  5. Alignment Check: Ensure proper alignment between connected shafts to prevent excessive stress on the coupling.
  6. Torque Measurement: Measure the transmitted torque to identify any discrepancies from the expected values.
  7. Dynamic Testing: Conduct dynamic tests with load variations to identify performance issues.
  8. Comparative Analysis: Compare coupling behavior to baseline performance data.

If any issues are identified, they should be promptly addressed through proper maintenance, realignment, or replacement of damaged components.

rubber coupling

Common Rubber Materials Used in Manufacturing Rubber Couplings

Various rubber materials are used in the manufacturing of rubber couplings, each chosen based on its specific properties and the intended application:

  • Neoprene: Known for its oil and chemical resistance, neoprene rubber is used in couplings that require durability and resistance to harsh environments.
  • Nitrile: Nitrile rubber offers excellent oil and fuel resistance, making it suitable for applications in machinery that involve contact with lubricants.
  • Natural Rubber: Natural rubber provides good elasticity and flexibility, making it suitable for couplings requiring high levels of shock and vibration absorption.
  • EPDM: Ethylene Propylene Diene Monomer (EPDM) rubber offers good resistance to weather, ozone, and aging, making it suitable for outdoor or high-temperature applications.
  • Polyurethane: Polyurethane rubber offers high abrasion resistance and can handle higher load capacities, making it suitable for heavy-duty applications.

The choice of rubber material depends on factors such as the operating environment, chemical exposure, temperature range, flexibility requirements, and load conditions. Engineers select the appropriate rubber material to ensure the coupling’s performance and longevity in specific applications.

rubber coupling

Types of Rubber Couplings Designed for Specific Uses

There are several types of rubber couplings, each designed with specific characteristics to suit various applications:

  • Flexible Jaw Couplings: These couplings consist of two hubs connected by a flexible rubber element. They are commonly used in applications where misalignment, vibrations, and shocks need to be dampened, such as in pumps, fans, and compressors.
  • Oldham Couplings: Oldham couplings use a rubber disk as the intermediate element between two hubs. They provide compensation for misalignment while maintaining a constant velocity between input and output shafts, often used in printing, packaging, and CNC machinery.
  • Tyre Couplings: These couplings have a high degree of torsional flexibility and are suitable for applications with substantial misalignment and shock absorption requirements, like in heavy-duty machinery and construction equipment.
  • Pin and Bush Couplings: These couplings use rubber bushes to provide vibration isolation and accommodate misalignment. They are used in various industrial applications, including conveyors, mixers, and crushers.
  • Diaphragm Couplings: Diaphragm couplings use a flexible rubber diaphragm to transmit torque and compensate for misalignment. They are commonly found in precision equipment like servo motors and robotics.

Each type of rubber coupling is designed to address specific needs in different applications. The choice of coupling depends on factors such as the degree of misalignment, torque requirements, shock absorption, and the level of precision needed.

China OEM Hot Sale High Quality Hydraulic Rubber Hose Sanyeflex Industry Equipment and Mining Machine Reasonable Price Tube Hose Fittings Couplings  China OEM Hot Sale High Quality Hydraulic Rubber Hose Sanyeflex Industry Equipment and Mining Machine Reasonable Price Tube Hose Fittings Couplings
editor by CX 2024-05-09

China OEM Female Thread Swaged Hydraulic Rubber Hose Coupling

Product Description

Female Thread Swaged Hydraulic Rubber Hose Coupling 

Hydraulic hose fittings: 
Material: stainless steel, carbon steel, brass, etc 
Connection: Male/Female 
Surface Treatment: Trivalent Silver Zinc, Trivalent Yellow Zinc, Hexavalent Yellow Zinc, Chrome Plate, Electric-polish etc. 
Application: Automobile, Engineering Machinery, Lathe, Agriculture Machine, Mining, Spurting the Oil Paint, Metallurgy petroleum , Construction, Chemicals, Textile, Ships, Ocean, Military, Recreation, Electronics and so forth.

Our QC procedure:
As we had more than 5 professional and technical personal, they ensure 100% products checking.
1. Material checking: strictly control of material using, meet international requested standards;
2. semi-finished products inspection: product inspection before 100% finished ;
3. production line test: with work team or data engineer who will inspect matchines and lines at fixed period.
4. finished prodcuct inspection: quality and property test before products are plated zinc, packed and loaded.

Process Characteristics:
High quality carbon steel rigid embryo is selected and manufactured by special machine tool. Hot melt special equipment processing, and equipped with efficient cleaning agent, high flushing, high accuracy and cleanliness. There is no oxide layer after heat treatment. Fully meet the requirements of high temperature, high pressure, corrosion resistance and so on. 96 hours of salt spray test and sealant are used for galvanizing. Rustproof, anticorrosive, superior performance, delicate surface, beautiful color.

FAQ
Q1. What is your terms of packing?

A: Generally, we pack our hose in woven package, fittings in carton box. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment?

A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?

A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?

A: Generally, it will take 10 to 20 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?

A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?

A: We can supply the sample if we have ready parts in stock, the customers no need to pay the sample cost but need pay the courier cost.

Q7. Do you test all your goods before delivery?

A: Yes, we have 100% test before delivery

Q8: How do you make our business long-term and good relationship?

A:1. We keep good quality and competitive price to ensure our customers benefit ;

2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

Shipping 

1. Orders will be dispatched around in 30 days after payment, depending on quantities.
2. We Always choose the most economical and reliable shipping company to make sure you receive the goods in time.
3. The tracking number will be provided to you once the consignment is shipped
4. Professional customer service to answer your questions or fix problems regarding your order.

Our Service
1. OEM Manufacturing welcome: Product, Package… 
2. Sample order 
3. We will reply you for your inquiry in 24 hours.
4. After sending, we will track the products for you once every 2 days, until you get the products. When you got the goods, test them, and give me a feedback. If you have any questions about the problem, contact with us, we will offer the solve way for you.

We Sincerely Welcome Partners All Over The World To Visit Us For CHINAMFG Cooperation!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rubber coupling

Suitability of Rubber Couplings for High-Speed Rotation and Varying Loads

Rubber couplings are generally well-suited for applications involving high-speed rotation and varying loads, thanks to their unique properties and design features.

High-Speed Rotation: Rubber couplings can effectively handle high-speed rotation due to their inherent flexibility and damping characteristics. The elastomeric material used in rubber couplings helps absorb and dissipate vibrations that can occur at high speeds, contributing to smoother operation and reduced wear on connected machinery components.

Varying Loads: Rubber couplings are capable of accommodating varying loads due to their ability to deform under stress. The flexibility of rubber allows it to absorb shocks and impacts caused by changes in load, preventing damage to connected equipment. This feature is particularly beneficial in applications where sudden changes in load can occur, such as in industrial machinery.

However, it’s important to consider the specific requirements of the application. While rubber couplings provide excellent vibration isolation and misalignment compensation, they may not offer the same level of torsional rigidity as some other coupling types. In cases where precise torque transmission is crucial, and minimal torsional deflection is required, other coupling options might be more suitable.

Overall, rubber couplings can provide reliable performance in applications involving high-speed rotation and varying loads, especially when the benefits of vibration damping and misalignment compensation are essential.

rubber coupling

Handling Torque and Vibration Suppression in Rubber Couplings

Rubber couplings are designed to effectively handle both high levels of torque transmission and vibration suppression. The flexibility and damping properties of rubber make it well-suited for these purposes:

  • Torque Transmission: Rubber couplings can transmit torque between shafts while accommodating angular misalignment. The rubber element flexes and deforms as torque is applied, allowing the coupling to transmit power even in misaligned conditions.
  • Vibration Suppression: Rubber’s inherent damping characteristics help absorb and dissipate vibrations and shocks generated during the operation of machinery. This feature reduces the transfer of vibrations to connected components, minimizing wear and enhancing overall system performance.

Engineers select the appropriate rubber material and coupling design to ensure that the coupling can effectively handle the required torque levels and provide the desired vibration suppression. Rubber couplings find applications in various industries where torque transmission and vibration damping are critical for smooth and reliable machinery operation.

rubber coupling

Role of Rubber Flexibility in Accommodating Misalignment

Rubber couplings are designed with a flexible element, usually made of elastomers, that plays a crucial role in accommodating misalignment between connected shafts. The flexibility of the rubber element allows it to deform and absorb angular, axial, and radial misalignments, providing several benefits:

1. Angular Misalignment: When the input and output shafts are not perfectly aligned in terms of angle, the rubber element can flex and twist, allowing the coupling to transmit torque even when the axes are not parallel.

2. Axial Misalignment: Axial misalignment occurs when the shafts move closer together or farther apart along their axis. The rubber element can compress or extend, adjusting the distance between the shafts without hindering torque transfer.

3. Radial Misalignment: Radial misalignment refers to the offset between the centers of the shafts. The rubber element can bend in response to radial displacement, ensuring that the coupling remains operational while accommodating the offset.

This flexibility not only enables the rubber coupling to handle misalignment but also helps prevent excessive stress on the connected machinery. By absorbing shock loads and distributing forces, the rubber element reduces wear and tear on components and minimizes the risk of premature failure.

In essence, the rubber’s flexibility in the coupling acts as a buffer against misalignment-induced stresses, contributing to smoother operation, improved longevity, and reduced maintenance in mechanical systems.

China OEM Female Thread Swaged Hydraulic Rubber Hose Coupling  China OEM Female Thread Swaged Hydraulic Rubber Hose Coupling
editor by CX 2024-05-06

China high quality Female Thread Swaged Hydraulic Rubber Hose Coupling

Product Description

Female Thread Swaged Hydraulic Rubber Hose Coupling 

Hydraulic hose fittings: 
Material: stainless steel, carbon steel, brass, etc 
Connection: Male/Female 
Surface Treatment: Trivalent Silver Zinc, Trivalent Yellow Zinc, Hexavalent Yellow Zinc, Chrome Plate, Electric-polish etc. 
Application: Automobile, Engineering Machinery, Lathe, Agriculture Machine, Mining, Spurting the Oil Paint, Metallurgy petroleum , Construction, Chemicals, Textile, Ships, Ocean, Military, Recreation, Electronics and so forth.

Our QC procedure:
As we had more than 5 professional and technical personal, they ensure 100% products checking.
1. Material checking: strictly control of material using, meet international requested standards;
2. semi-finished products inspection: product inspection before 100% finished ;
3. production line test: with work team or data engineer who will inspect matchines and lines at fixed period.
4. finished prodcuct inspection: quality and property test before products are plated zinc, packed and loaded.

Process Characteristics:
High quality carbon steel rigid embryo is selected and manufactured by special machine tool. Hot melt special equipment processing, and equipped with efficient cleaning agent, high flushing, high accuracy and cleanliness. There is no oxide layer after heat treatment. Fully meet the requirements of high temperature, high pressure, corrosion resistance and so on. 96 hours of salt spray test and sealant are used for galvanizing. Rustproof, anticorrosive, superior performance, delicate surface, beautiful color.

FAQ
Q1. What is your terms of packing?

A: Generally, we pack our hose in woven package, fittings in carton box. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment?

A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?

A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?

A: Generally, it will take 10 to 20 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?

A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?

A: We can supply the sample if we have ready parts in stock, the customers no need to pay the sample cost but need pay the courier cost.

Q7. Do you test all your goods before delivery?

A: Yes, we have 100% test before delivery

Q8: How do you make our business long-term and good relationship?

A:1. We keep good quality and competitive price to ensure our customers benefit ;

2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

Shipping 

1. Orders will be dispatched around in 30 days after payment, depending on quantities.
2. We Always choose the most economical and reliable shipping company to make sure you receive the goods in time.
3. The tracking number will be provided to you once the consignment is shipped
4. Professional customer service to answer your questions or fix problems regarding your order.

Our Service
1. OEM Manufacturing welcome: Product, Package… 
2. Sample order 
3. We will reply you for your inquiry in 24 hours.
4. After sending, we will track the products for you once every 2 days, until you get the products. When you got the goods, test them, and give me a feedback. If you have any questions about the problem, contact with us, we will offer the solve way for you.

We Sincerely Welcome Partners All Over The World To Visit Us For CHINAMFG Cooperation!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rubber coupling

Impact of Elastomer Element Design on Rubber Coupling Performance

The design of the elastomer elements in a rubber coupling plays a critical role in determining its overall performance and capabilities. The elastomer elements are the heart of the coupling, responsible for transmitting torque, absorbing vibrations, and accommodating misalignments. The following aspects of elastomer element design significantly impact the coupling’s performance:

  • Elastomer Material: The choice of elastomer material influences the coupling’s flexibility, damping characteristics, and resistance to wear. Different elastomers offer varying levels of resilience, chemical resistance, and temperature tolerance. Common elastomers used include natural rubber, synthetic rubber compounds, and polyurethane.
  • Elastomer Hardness (Durometer): The durometer hardness of the elastomer affects its flexibility and ability to absorb vibrations. Softer elastomers have higher damping capabilities but may offer less torsional stiffness. Harder elastomers provide better torque transmission but may have reduced vibration isolation.
  • Elastomer Shape and Geometry: The shape and geometry of the elastomer elements influence their flexibility and deformation characteristics. Different designs, such as cylindrical, star-shaped, or spider-shaped elements, affect the coupling’s ability to accommodate misalignments and transmit torque smoothly.
  • Elastomer Bonding: The way the elastomer is bonded to the coupling’s hubs or inserts impacts the coupling’s overall durability and reliability. Proper bonding ensures that the elastomer effectively transfers torque and maintains its properties over time.
  • Elastomer Properties Over Temperature: Elastomers can exhibit changes in performance with temperature fluctuations. Understanding how the chosen elastomer material behaves at different temperatures is essential for applications with varying operating conditions.

The design of the elastomer elements is a delicate balance between providing flexibility for vibration isolation and misalignment compensation while ensuring adequate torque transmission and overall coupling stiffness. Engineers must carefully select elastomer materials and design features based on the specific requirements of the application to achieve optimal coupling performance.

rubber coupling

Signs of Wear or Deterioration in Rubber Couplings

Rubber couplings can show signs of wear and deterioration over time due to factors like torque, temperature, and environmental conditions. To identify potential issues, watch out for the following signs:

  • Visible Cracks or Damage: Inspect the rubber element for visible cracks, tears, or physical damage. Such issues can weaken the coupling’s torque transmission and vibration damping capabilities.
  • Reduced Flexibility: Stiff or less flexible rubber indicates material degradation, which can impact the coupling’s ability to accommodate misalignment and absorb vibrations.
  • Increased Vibrations: Excessive machinery vibrations may suggest worn-out rubber couplings. Deterioration of the rubber diminishes its vibration dampening properties.
  • Unusual Noises: Any unusual sounds like squeaking or knocking might point to improper rubber coupling function and the need for inspection.
  • Altered Performance: Decline in machinery performance, such as reduced torque transmission or higher energy consumption, can indicate coupling wear.

Regular inspections, visual checks, vibration analysis, and performance monitoring can help detect wear and deterioration early. This enables timely replacement and avoids operational problems.

rubber coupling

Factors to Consider When Selecting a Rubber Coupling

Choosing the right rubber coupling for a specific application involves considering various factors:

1. Torque Requirements: Evaluate the torque that needs to be transmitted between the input and output shafts. Select a coupling with a rubber element that can handle the required torque without exceeding its limits.

2. Misalignment Compensation: Determine the degree of misalignment (angular, axial, and radial) present in the system. Choose a rubber coupling with appropriate flexibility to accommodate the expected misalignment while maintaining efficient torque transmission.

3. Vibration Damping: Assess the level of vibrations and shocks in the application. Opt for a rubber coupling with effective vibration-damping properties to protect the machinery and enhance its reliability.

4. Service Environment: Consider the operating conditions, including temperature, humidity, exposure to chemicals, and potential contaminants. Select a rubber material that can withstand the environment without deteriorating.

5. Shaft Sizes: Ensure that the coupling’s bore sizes match the shaft diameters of the connected equipment. Proper shaft fitment is crucial for efficient torque transmission.

6. Maintenance Requirements: Evaluate the maintenance practices of the system. Some rubber couplings may require periodic inspection and replacement due to wear over time.

7. Cost and Budget: Factor in the budget constraints while choosing a suitable rubber coupling. Balancing performance and cost is essential for an optimal solution.

8. Application Type: Different industries and applications have unique requirements. Choose a coupling type (spider, jaw, tire, etc.) based on the specific needs of the application.

By carefully considering these factors, you can select a rubber coupling that provides efficient torque transmission, vibration isolation, and durability in your mechanical system.

China high quality Female Thread Swaged Hydraulic Rubber Hose Coupling  China high quality Female Thread Swaged Hydraulic Rubber Hose Coupling
editor by CX 2024-04-24

China factory Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling

Product Description

Flexible Coupling Rubber Spider Insert Lovejoy L-type Hydraulic Jaw Coupler L series jaw type flexible coupling
 

Features

1. Split in half design for simple installation, maintaining free
2. High misalignment capacity
3. Facility protection for a twirl, twist, impact, and abrasion
4. No lubrication for polyurethane flex element 
5. Available for bore-to-size hubs and taper lock bushes
6. Low noise 

 

Product Description

Size

Type

A

B

D

E

Standard

Metric bore

Inch bore

bore

Min

Max

Min

Max

L035

1

16

20.5

6.6

/

3

3

8

1/8″

3/8″

L050

1

28

43.2

15.6

/

6

6

15

3/16″

5/8″

L070

1

35

50.8

19

/

9

9

19

3/16″

3/4″

L075

1

45

54.7

21

/

9

9

25

3/16″

1″

L090

1

54

54.7

21

/

9

9

28

3/16″

1 1/8″

L095

1

54

63.7

25.5

/

9

9

28

3/8″

1 1/8″

L099

1

64.5

72.5

27

/

12

12

35

7/16″

1 3/8″

L100

1

64.5

88.5

35

/

12

12

35

7/16″

1 3/8″

L110

1

85

108

43

/

15

15

48

1/2″

1 7/8″

L150

1

96

115.4

45

/

15

15

48

5/8″

1 7/8″

L190

2

115

133.4

54

101.6

19

19

55

5/8″

2 1/4″

L225

2

127

153.4

64

108

19

19

65

3/4″

2 5/8″

 

Related Products

 

 

Company Profile

 

FAQ

Q: How to ship to us?
A: It is available by air, by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rubber coupling

Minimizing Resonance and Improving Machinery Performance with Rubber Couplings

A rubber coupling can play a significant role in minimizing resonance and enhancing the overall performance of machinery by effectively damping vibrations and reducing the risk of resonance-related issues. Resonance is a phenomenon where a mechanical system’s natural frequency matches the frequency of external vibrations, leading to amplified oscillations and potential damage.

The following ways illustrate how rubber couplings contribute to minimizing resonance and improving machinery performance:

  • Vibration Damping: Rubber couplings utilize the inherent damping properties of elastomers to absorb and dissipate vibrations generated during operation. These vibrations can include those caused by unbalanced loads, eccentricities, or other disturbances. By damping these vibrations, rubber couplings prevent them from building up and causing resonance.
  • Vibration Isolation: Rubber couplings act as isolators by decoupling the connected components from each other. This isolation prevents vibrations from being transmitted directly from one component to another, thereby reducing the potential for resonance to occur.
  • Misalignment Compensation: Rubber couplings can accommodate misalignments between shafts, which often contribute to excessive vibrations. By allowing a certain degree of misalignment, the coupling prevents additional forces that could trigger resonance.
  • Reduced Stiffness: The flexibility of the elastomer elements in rubber couplings can reduce the overall stiffness of the system. A lower stiffness helps avoid the amplification of resonance by allowing some deformation of the coupling under varying loads and conditions.
  • Dynamic Absorption: Rubber couplings are effective at absorbing dynamic loads, including sudden shocks or impacts. These dynamic events can excite resonance, and the coupling’s ability to absorb and disperse such forces helps prevent resonance-related issues.

By effectively dampening vibrations, isolating components, and accommodating misalignments, rubber couplings can help minimize the risk of resonance-related problems. Engineers and designers must carefully select the appropriate rubber coupling type, elastomer material, and design to match the specific machinery and operating conditions, thereby ensuring improved machinery performance and longevity.

rubber coupling

Common Rubber Materials Used in Manufacturing Rubber Couplings

Various rubber materials are used in the manufacturing of rubber couplings, each chosen based on its specific properties and the intended application:

  • Neoprene: Known for its oil and chemical resistance, neoprene rubber is used in couplings that require durability and resistance to harsh environments.
  • Nitrile: Nitrile rubber offers excellent oil and fuel resistance, making it suitable for applications in machinery that involve contact with lubricants.
  • Natural Rubber: Natural rubber provides good elasticity and flexibility, making it suitable for couplings requiring high levels of shock and vibration absorption.
  • EPDM: Ethylene Propylene Diene Monomer (EPDM) rubber offers good resistance to weather, ozone, and aging, making it suitable for outdoor or high-temperature applications.
  • Polyurethane: Polyurethane rubber offers high abrasion resistance and can handle higher load capacities, making it suitable for heavy-duty applications.

The choice of rubber material depends on factors such as the operating environment, chemical exposure, temperature range, flexibility requirements, and load conditions. Engineers select the appropriate rubber material to ensure the coupling’s performance and longevity in specific applications.

rubber coupling

Role of Rubber Flexibility in Accommodating Misalignment

Rubber couplings are designed with a flexible element, usually made of elastomers, that plays a crucial role in accommodating misalignment between connected shafts. The flexibility of the rubber element allows it to deform and absorb angular, axial, and radial misalignments, providing several benefits:

1. Angular Misalignment: When the input and output shafts are not perfectly aligned in terms of angle, the rubber element can flex and twist, allowing the coupling to transmit torque even when the axes are not parallel.

2. Axial Misalignment: Axial misalignment occurs when the shafts move closer together or farther apart along their axis. The rubber element can compress or extend, adjusting the distance between the shafts without hindering torque transfer.

3. Radial Misalignment: Radial misalignment refers to the offset between the centers of the shafts. The rubber element can bend in response to radial displacement, ensuring that the coupling remains operational while accommodating the offset.

This flexibility not only enables the rubber coupling to handle misalignment but also helps prevent excessive stress on the connected machinery. By absorbing shock loads and distributing forces, the rubber element reduces wear and tear on components and minimizes the risk of premature failure.

In essence, the rubber’s flexibility in the coupling acts as a buffer against misalignment-induced stresses, contributing to smoother operation, improved longevity, and reduced maintenance in mechanical systems.

China factory Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling  China factory Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling
editor by CX 2024-04-15

China Custom Industrial Flexible High Pressure Steel Wire Hydraulic Rubber Fuel Oil Hose Fitting Couplings Factory

Product Description

                                                    Rubber Smooth Cover Fuel Oil Hose

Tube: black NITRIL rubber tube, oil and fuel resistant, smooth
Reinforcement: textile braided high tensile synthetic yarn
Cover: black smooth NEOPRENE rubber, oil, ozone, weather, abrasion resistant
Applications: in fuel systems like gasoline, diesel fuel, also suitable for loading and unloading tank cars, automobiles, oil refine and oil related industrial, etc.
Temperature: -40°C + 100°C
Length: 40, 50, 100M
Packing: transparent P.V.C. film or Weaving bags

ID (mm) ID (inch) Wall (mm) WP (bar) BP (bar) Radius (mm) Weight (kg/m)
6 1/4 3.5 20 60 23 0.18
8 5/16 3.5 20 60 28 0.21
10 3/8 3.5 20 60 35 0.27
13 1/2 4 20 60 58 0.41
16 5/8 4.5 20 60 78 0.5
19 3/4 4.75 20 60 105 0.68
25 1 5.5 20 60 130 0.92

HYROTECH Strength:
 

1.Competitive Prices
 

2.Only produce high quality products
 

3.Raw Material quality strictly checked before production
 

4.Various tests before shipping to make sure stable quality
 

5.Very fast delivery time


 

HangZhou CHINAMFG Rubber & Plastic Products Co., Ltd

 

Company Introduction:

HYROTECH is a leading manufacturer of various rubber hoses & related accessories in China for more than 10 years.

Our products have been sold to more than 60 countries, including USA,Brazil, Colombia, Chile, Argentina, Peru, Russia, Ukraine,Thailand, Spain,UAE, Saudi Arabia,Iran, etc. 

Factory Show

Our factory covers an area of 20000 square CHINAMFG workship with a total invest ment up to RMB 100 million.

We own 100 sets of different equipment for production, testing and employ more than 200 staffs, including 15 technicians.

Our Annul output is 10 million CHINAMFG for hydraulic hoses and 5 million  CHINAMFG for industrial hoses.

Contact us

We are waiting for you, please feel free to contact us. We will produce stable and high quality product for you

 

 

 

rubber coupling

Impact of Elastomer Element Design on Rubber Coupling Performance

The design of the elastomer elements in a rubber coupling plays a critical role in determining its overall performance and capabilities. The elastomer elements are the heart of the coupling, responsible for transmitting torque, absorbing vibrations, and accommodating misalignments. The following aspects of elastomer element design significantly impact the coupling’s performance:

  • Elastomer Material: The choice of elastomer material influences the coupling’s flexibility, damping characteristics, and resistance to wear. Different elastomers offer varying levels of resilience, chemical resistance, and temperature tolerance. Common elastomers used include natural rubber, synthetic rubber compounds, and polyurethane.
  • Elastomer Hardness (Durometer): The durometer hardness of the elastomer affects its flexibility and ability to absorb vibrations. Softer elastomers have higher damping capabilities but may offer less torsional stiffness. Harder elastomers provide better torque transmission but may have reduced vibration isolation.
  • Elastomer Shape and Geometry: The shape and geometry of the elastomer elements influence their flexibility and deformation characteristics. Different designs, such as cylindrical, star-shaped, or spider-shaped elements, affect the coupling’s ability to accommodate misalignments and transmit torque smoothly.
  • Elastomer Bonding: The way the elastomer is bonded to the coupling’s hubs or inserts impacts the coupling’s overall durability and reliability. Proper bonding ensures that the elastomer effectively transfers torque and maintains its properties over time.
  • Elastomer Properties Over Temperature: Elastomers can exhibit changes in performance with temperature fluctuations. Understanding how the chosen elastomer material behaves at different temperatures is essential for applications with varying operating conditions.

The design of the elastomer elements is a delicate balance between providing flexibility for vibration isolation and misalignment compensation while ensuring adequate torque transmission and overall coupling stiffness. Engineers must carefully select elastomer materials and design features based on the specific requirements of the application to achieve optimal coupling performance.

rubber coupling

Comparison of Rubber Couplings with Other Flexible Coupling Types

Rubber couplings, elastomeric couplings, and disc couplings are all flexible coupling options used in various mechanical systems. Here’s a comparison of rubber couplings with these alternatives:

Rubber Couplings:

  • Transmit torque while damping vibrations through the flexibility of rubber elements.
  • Provide good misalignment compensation and shock absorption.
  • Relatively simple construction and cost-effective.
  • Effective in reducing noise and vibration in applications.
  • Suitable for moderate to high torque applications with moderate misalignment.

Elastomeric Couplings:

  • Similar to rubber couplings, utilize elastomeric materials for flexibility and vibration damping.
  • Offer higher torque capacity and stiffness compared to rubber couplings.
  • Provide better misalignment compensation and torsional stiffness.
  • Wider range of sizes and configurations for various applications.
  • Commonly used in pumps, compressors, and other machinery.

Disc Couplings:

  • Use a series of metal discs to transmit torque and accommodate misalignment.
  • Offer high torsional stiffness and accuracy in torque transmission.
  • Can handle higher speeds and torque compared to rubber or elastomeric couplings.
  • Require precision in manufacturing and installation.
  • Used in applications requiring high precision and minimal backlash.

When choosing between these flexible coupling types, considerations such as torque requirements, misalignment compensation, torsional stiffness, and application-specific needs play a significant role in making the appropriate selection. Each type has its advantages and limitations, making it important to assess the specific requirements of the machinery system.

rubber coupling

Challenges of Misaligned Rubber Couplings and Their Resolution

Misaligned rubber couplings can lead to several challenges that impact the performance and reliability of machinery. These challenges include:

1. Reduced Efficiency: Misalignment can result in increased friction, causing energy loss and reduced efficiency in power transmission.

2. Increased Wear: Misaligned rubber couplings can cause uneven wear on the coupling’s rubber element and other connected components, leading to premature failure.

3. Vibrations and Noise: Misalignment can cause vibrations and noise, which not only affect the machinery’s operation but also contribute to discomfort for operators.

4. Overloading: Misalignment can lead to uneven loading on the coupling and connected components, potentially causing overloading and damage.

5. Premature Failure: Continuous operation with misaligned couplings can accelerate wear and fatigue, leading to premature failure of the coupling and other components.

To resolve these challenges, proper alignment practices are crucial:

1. Regular Maintenance: Perform routine inspections to identify misalignment and other issues early, allowing for timely adjustments.

2. Precise Installation: Ensure accurate alignment during the installation process to prevent initial misalignment.

3. Laser Alignment: Use laser alignment tools for accurate and reliable alignment between shafts.

4. Corrective Measures: If misalignment is detected, take corrective actions promptly to restore proper alignment.

5. Balancing Loads: Distribute loads evenly across the coupling and connected components to prevent overloading.

By addressing misalignment challenges proactively and adopting appropriate maintenance practices, the longevity and performance of rubber couplings can be significantly improved, minimizing downtime and maintenance costs in industrial applications.

China Custom Industrial Flexible High Pressure Steel Wire Hydraulic Rubber Fuel Oil Hose Fitting Couplings Factory  China Custom Industrial Flexible High Pressure Steel Wire Hydraulic Rubber Fuel Oil Hose Fitting Couplings Factory
editor by CX 2023-12-14

China best Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling

Product Description

Flexible Coupling Rubber Spider Insert Lovejoy L-type Hydraulic Jaw Coupler L series jaw type flexible coupling
 

Features

1. Split in half design for simple installation, maintaining free
2. High misalignment capacity
3. Facility protection for a twirl, twist, impact, and abrasion
4. No lubrication for polyurethane flex element 
5. Available for bore-to-size hubs and taper lock bushes
6. Low noise 

 

Product Description

Size

Type

A

B

D

E

Standard

Metric bore

Inch bore

bore

Min

Max

Min

Max

L035

1

16

20.5

6.6

/

3

3

8

1/8″

3/8″

L050

1

28

43.2

15.6

/

6

6

15

3/16″

5/8″

L070

1

35

50.8

19

/

9

9

19

3/16″

3/4″

L075

1

45

54.7

21

/

9

9

25

3/16″

1″

L090

1

54

54.7

21

/

9

9

28

3/16″

1 1/8″

L095

1

54

63.7

25.5

/

9

9

28

3/8″

1 1/8″

L099

1

64.5

72.5

27

/

12

12

35

7/16″

1 3/8″

L100

1

64.5

88.5

35

/

12

12

35

7/16″

1 3/8″

L110

1

85

108

43

/

15

15

48

1/2″

1 7/8″

L150

1

96

115.4

45

/

15

15

48

5/8″

1 7/8″

L190

2

115

133.4

54

101.6

19

19

55

5/8″

2 1/4″

L225

2

127

153.4

64

108

19

19

65

3/4″

2 5/8″

 

Related Products

 

 

Company Profile

 

FAQ

Q: How to ship to us?
A: It is available by air, by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
 

rubber coupling

Minimizing Resonance and Improving Machinery Performance with Rubber Couplings

A rubber coupling can play a significant role in minimizing resonance and enhancing the overall performance of machinery by effectively damping vibrations and reducing the risk of resonance-related issues. Resonance is a phenomenon where a mechanical system’s natural frequency matches the frequency of external vibrations, leading to amplified oscillations and potential damage.

The following ways illustrate how rubber couplings contribute to minimizing resonance and improving machinery performance:

  • Vibration Damping: Rubber couplings utilize the inherent damping properties of elastomers to absorb and dissipate vibrations generated during operation. These vibrations can include those caused by unbalanced loads, eccentricities, or other disturbances. By damping these vibrations, rubber couplings prevent them from building up and causing resonance.
  • Vibration Isolation: Rubber couplings act as isolators by decoupling the connected components from each other. This isolation prevents vibrations from being transmitted directly from one component to another, thereby reducing the potential for resonance to occur.
  • Misalignment Compensation: Rubber couplings can accommodate misalignments between shafts, which often contribute to excessive vibrations. By allowing a certain degree of misalignment, the coupling prevents additional forces that could trigger resonance.
  • Reduced Stiffness: The flexibility of the elastomer elements in rubber couplings can reduce the overall stiffness of the system. A lower stiffness helps avoid the amplification of resonance by allowing some deformation of the coupling under varying loads and conditions.
  • Dynamic Absorption: Rubber couplings are effective at absorbing dynamic loads, including sudden shocks or impacts. These dynamic events can excite resonance, and the coupling’s ability to absorb and disperse such forces helps prevent resonance-related issues.

By effectively dampening vibrations, isolating components, and accommodating misalignments, rubber couplings can help minimize the risk of resonance-related problems. Engineers and designers must carefully select the appropriate rubber coupling type, elastomer material, and design to match the specific machinery and operating conditions, thereby ensuring improved machinery performance and longevity.

rubber coupling

Comparison of Rubber Couplings with Other Flexible Coupling Types

Rubber couplings, elastomeric couplings, and disc couplings are all flexible coupling options used in various mechanical systems. Here’s a comparison of rubber couplings with these alternatives:

Rubber Couplings:

  • Transmit torque while damping vibrations through the flexibility of rubber elements.
  • Provide good misalignment compensation and shock absorption.
  • Relatively simple construction and cost-effective.
  • Effective in reducing noise and vibration in applications.
  • Suitable for moderate to high torque applications with moderate misalignment.

Elastomeric Couplings:

  • Similar to rubber couplings, utilize elastomeric materials for flexibility and vibration damping.
  • Offer higher torque capacity and stiffness compared to rubber couplings.
  • Provide better misalignment compensation and torsional stiffness.
  • Wider range of sizes and configurations for various applications.
  • Commonly used in pumps, compressors, and other machinery.

Disc Couplings:

  • Use a series of metal discs to transmit torque and accommodate misalignment.
  • Offer high torsional stiffness and accuracy in torque transmission.
  • Can handle higher speeds and torque compared to rubber or elastomeric couplings.
  • Require precision in manufacturing and installation.
  • Used in applications requiring high precision and minimal backlash.

When choosing between these flexible coupling types, considerations such as torque requirements, misalignment compensation, torsional stiffness, and application-specific needs play a significant role in making the appropriate selection. Each type has its advantages and limitations, making it important to assess the specific requirements of the machinery system.

rubber coupling

Main Advantages of Using Rubber Couplings in Industrial Applications

Rubber couplings offer several key advantages when used in industrial applications. These advantages make them a popular choice for various industries and mechanical systems:

  • Misalignment Tolerance: Rubber couplings can accommodate angular, parallel, and axial misalignments between connected shafts, reducing the need for precise alignment during installation and operation.
  • Vibration Damping: The rubber elements of these couplings absorb and dampen vibrations, minimizing the transmission of vibrations and shocks to other components. This helps prevent damage, wear, and noise generation.
  • Shock Absorption: In systems where sudden shocks or impacts occur, rubber couplings absorb and cushion the impact, protecting connected components from damage.
  • Noise Reduction: The ability to dampen vibrations also contributes to noise reduction, creating quieter operation environments for machinery and equipment.
  • Equipment Protection: Rubber couplings protect sensitive equipment from excessive loads, vibrations, and shocks, enhancing the longevity and reliability of the system.
  • Cost-Effectiveness: Compared to some other coupling types, rubber couplings are generally cost-effective to manufacture, purchase, and maintain.
  • Easy Installation: The flexibility and design of rubber couplings make them relatively easy to install without the need for specialized tools or complex procedures.
  • Minimal Maintenance: Rubber couplings require minimal maintenance and lubrication, reducing downtime and maintenance costs.
  • Wide Range of Applications: Rubber couplings are versatile and find applications in various industries, including automotive, power generation, pumps, conveyors, and more.

In summary, the main advantages of using rubber couplings in industrial applications include their ability to tolerate misalignment, dampen vibrations, absorb shocks, reduce noise, protect equipment, cost-effectiveness, easy installation, low maintenance requirements, and suitability for a wide range of applications.

China best Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling  China best Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling
editor by CX 2023-10-20

China Hot selling Coupling Hydraulic Fluid Drive Roller Chain Spider Flexible Jaw Rubber Flexible Jaw Flange Motor Rubber Shaft Steel

Product Description

    Coupling Hydraulic Fluid Drive Roller Chain Spider Flexible Jaw Rubber Flexible Jaw Flange Motor Rubber Shaft Steel

Application of Coupling

A coupling is a mechanical device that connects 2 shafts together. It is used to transmit power from 1 shaft to another, while allowing for some degree of misalignment or end movement or both.

Couplings are used in a variety of applications, including:

  • Machinery: Couplings are used to connect the shafts of different machines, such as motors, pumps, and generators.
  • Vehicles: Couplings are used to connect the engine and transmission of a vehicle.
  • Power transmission: Couplings are used to transmit power from 1 source to another, such as from a generator to a distribution network.
  • Industrial applications: Couplings are used in various industrial applications, such as in food processing, chemical processing, and manufacturing.

There are many different types of couplings, each with its own advantages and disadvantages. Some of the most common types of couplings include:

  • Flanged couplings: Flanged couplings are the most common type of coupling. They are simple and easy to install, and they are relatively inexpensive. However, they can be bulky and they can add weight to the system.
  • Jaw couplings: Jaw couplings are a type of flexible coupling. They are able to accommodate misalignment between the shafts, and they are relatively compact. However, they can be more expensive than flanged couplings.
  • Hirth couplings: Hirth couplings are a type of rigid coupling. They are able to transmit high torque, and they are relatively durable. However, they can be more difficult to install than other types of couplings.
  • Universal joints: Universal joints are a type of flexible coupling. They are able to accommodate misalignment between the shafts, and they are relatively compact. However, they can be more expensive than other types of couplings.

The type of coupling best for a particular application will depend on several factors, including the amount of torque that needs to be transmitted, the amount of misalignment allowed, and the cost.

rubber coupling

Minimizing Resonance and Improving Machinery Performance with Rubber Couplings

A rubber coupling can play a significant role in minimizing resonance and enhancing the overall performance of machinery by effectively damping vibrations and reducing the risk of resonance-related issues. Resonance is a phenomenon where a mechanical system’s natural frequency matches the frequency of external vibrations, leading to amplified oscillations and potential damage.

The following ways illustrate how rubber couplings contribute to minimizing resonance and improving machinery performance:

  • Vibration Damping: Rubber couplings utilize the inherent damping properties of elastomers to absorb and dissipate vibrations generated during operation. These vibrations can include those caused by unbalanced loads, eccentricities, or other disturbances. By damping these vibrations, rubber couplings prevent them from building up and causing resonance.
  • Vibration Isolation: Rubber couplings act as isolators by decoupling the connected components from each other. This isolation prevents vibrations from being transmitted directly from one component to another, thereby reducing the potential for resonance to occur.
  • Misalignment Compensation: Rubber couplings can accommodate misalignments between shafts, which often contribute to excessive vibrations. By allowing a certain degree of misalignment, the coupling prevents additional forces that could trigger resonance.
  • Reduced Stiffness: The flexibility of the elastomer elements in rubber couplings can reduce the overall stiffness of the system. A lower stiffness helps avoid the amplification of resonance by allowing some deformation of the coupling under varying loads and conditions.
  • Dynamic Absorption: Rubber couplings are effective at absorbing dynamic loads, including sudden shocks or impacts. These dynamic events can excite resonance, and the coupling’s ability to absorb and disperse such forces helps prevent resonance-related issues.

By effectively dampening vibrations, isolating components, and accommodating misalignments, rubber couplings can help minimize the risk of resonance-related problems. Engineers and designers must carefully select the appropriate rubber coupling type, elastomer material, and design to match the specific machinery and operating conditions, thereby ensuring improved machinery performance and longevity.

rubber coupling

Handling Torque and Vibration Suppression in Rubber Couplings

Rubber couplings are designed to effectively handle both high levels of torque transmission and vibration suppression. The flexibility and damping properties of rubber make it well-suited for these purposes:

  • Torque Transmission: Rubber couplings can transmit torque between shafts while accommodating angular misalignment. The rubber element flexes and deforms as torque is applied, allowing the coupling to transmit power even in misaligned conditions.
  • Vibration Suppression: Rubber’s inherent damping characteristics help absorb and dissipate vibrations and shocks generated during the operation of machinery. This feature reduces the transfer of vibrations to connected components, minimizing wear and enhancing overall system performance.

Engineers select the appropriate rubber material and coupling design to ensure that the coupling can effectively handle the required torque levels and provide the desired vibration suppression. Rubber couplings find applications in various industries where torque transmission and vibration damping are critical for smooth and reliable machinery operation.

rubber coupling

Challenges of Misaligned Rubber Couplings and Their Resolution

Misaligned rubber couplings can lead to several challenges that impact the performance and reliability of machinery. These challenges include:

1. Reduced Efficiency: Misalignment can result in increased friction, causing energy loss and reduced efficiency in power transmission.

2. Increased Wear: Misaligned rubber couplings can cause uneven wear on the coupling’s rubber element and other connected components, leading to premature failure.

3. Vibrations and Noise: Misalignment can cause vibrations and noise, which not only affect the machinery’s operation but also contribute to discomfort for operators.

4. Overloading: Misalignment can lead to uneven loading on the coupling and connected components, potentially causing overloading and damage.

5. Premature Failure: Continuous operation with misaligned couplings can accelerate wear and fatigue, leading to premature failure of the coupling and other components.

To resolve these challenges, proper alignment practices are crucial:

1. Regular Maintenance: Perform routine inspections to identify misalignment and other issues early, allowing for timely adjustments.

2. Precise Installation: Ensure accurate alignment during the installation process to prevent initial misalignment.

3. Laser Alignment: Use laser alignment tools for accurate and reliable alignment between shafts.

4. Corrective Measures: If misalignment is detected, take corrective actions promptly to restore proper alignment.

5. Balancing Loads: Distribute loads evenly across the coupling and connected components to prevent overloading.

By addressing misalignment challenges proactively and adopting appropriate maintenance practices, the longevity and performance of rubber couplings can be significantly improved, minimizing downtime and maintenance costs in industrial applications.

China Hot selling Coupling Hydraulic Fluid Drive Roller Chain Spider Flexible Jaw Rubber Flexible Jaw Flange Motor Rubber Shaft Steel  China Hot selling Coupling Hydraulic Fluid Drive Roller Chain Spider Flexible Jaw Rubber Flexible Jaw Flange Motor Rubber Shaft Steel
editor by CX 2023-10-08

China high quality Quality SS304 Hydraulic Quick Coupler Pressure Rubber Hose Fitting Coupling

Product Description

High Pressure Stainless Steel 304 Hydraulic Quick Coupler Coupling

Product Introduction:

Body Size(in) 1/4(02) 3/8(03) 1/2(04) 5/8(06) 3/4(08) 1(10) 1-1/2(12) 2(16)
Rated Pressure(PSI) 5000 3000 3000 3000 3000 3000 3000 3000
Rated Flow(GPM) 3 6 12 20 28 50 80 100
Spillage (ML) 0.006 0.012 0.02 0.026 0.032 0.035 0.05 0.1
(max. per disconnect)
Temperature Range -20ºC to +120ºC
Standard seal material NBR

1.Material:
                 Material of Female Socket: Zinc- Chromate plated Steel
                 Material of Male Plug: Zinc- Chromate plated Steel
2. Advantage: Critical Parts are hardened for durability.
                       Poppet valves are available to prevent uncoupled leakage.
                       Poppet valves open automatically when coupled within rated working pressure to keep the flow expeditely.
3. Sizes: NPT 1/4, 3/8, 1/2, 3/4, 1. It’s OK to order Female Socket and Male Plug together or seperately.
4. Standard: ISO7241-1 Series A
Interchangeable with:
PARKER 6600 series
FASTER ANV series
AEROQUIP 5600 series
HANSEN HA 15000 series
What’s Included:
* Female Coupler
* Male Coupler

Main Material and Series:
Carbon steel,Brass, Stainless steel 304/316
ISO 7241A Series ,ISO 7241B Series ,FLAT FACE COUPLING

Our Service: We can crimp hose assembly for our customers

Application:
Mainly used for construction equipment, hydraulic machinery, oil euipment and other hydraulic applications.

FAQ:
Conventional packaging: carton, can be customized according to customer needs;
Transportation: express, sea and air freight are support
Delivery Time:
1.If we have stock,we’ll send out to you in a week;
2. Generally, it will take about 20 days. The specific delivery date will be negotiated according to your order.
MOQ:100
(If the quantity you need is less than 100 pieces, please feel free to make an inquiry with us. If we have stock, you can also
order.)
Payment:LC/TT
 our payment  usual is T/T ,L/C ,if you need other payment , please inform us

rubber coupling

Maintaining and Preserving Rubber Coupling Performance

To ensure the longevity and optimal performance of rubber couplings, the following best practices should be observed:

  • Regular Inspections: Perform visual inspections for signs of wear, cracks, or damage.
  • Lubrication: Apply appropriate lubricants to minimize friction and extend rubber life.
  • Alignment: Maintain proper alignment between connected shafts to prevent undue stress on the coupling.
  • Temperature Control: Monitor operating temperatures to prevent overheating that can accelerate rubber degradation.
  • Load Monitoring: Avoid overloading the coupling beyond its rated capacity.
  • Vibration Analysis: Monitor vibration levels and address excessive vibrations promptly.
  • Regular Maintenance: Follow manufacturer’s recommendations for maintenance schedules.
  • Replacement: Replace worn or damaged rubber elements as needed.

By adhering to these practices, the performance and service life of rubber couplings can be effectively preserved.

rubber coupling

Industry Standards and Guidelines for Rubber Couplings

There are no specific industry standards or guidelines that exclusively govern the design and application of rubber couplings. However, various general standards and engineering practices apply to flexible couplings, including rubber couplings:

  • ISO 14691: This standard provides guidelines for the installation, use, and maintenance of industrial flexible couplings, which include rubber couplings.
  • AGMA 9005: The American Gear Manufacturers Association (AGMA) standard provides information on selecting lubricants and lubrication methods for flexible couplings, ensuring proper performance and longevity.
  • API 671: This API standard specifies the requirements for special-purpose couplings used in petroleum, chemical, and gas industry services, which can include rubber couplings for specific applications.
  • Manufacturer Recommendations: Many rubber coupling manufacturers provide guidelines, specifications, and installation instructions for their products, helping users select the right coupling and use it correctly.

Since rubber couplings fall under the category of flexible couplings, engineers and designers can follow these broader standards and best practices while considering the specific characteristics and performance requirements of rubber couplings for their applications.

rubber coupling

Challenges of Misaligned Rubber Couplings and Their Resolution

Misaligned rubber couplings can lead to several challenges that impact the performance and reliability of machinery. These challenges include:

1. Reduced Efficiency: Misalignment can result in increased friction, causing energy loss and reduced efficiency in power transmission.

2. Increased Wear: Misaligned rubber couplings can cause uneven wear on the coupling’s rubber element and other connected components, leading to premature failure.

3. Vibrations and Noise: Misalignment can cause vibrations and noise, which not only affect the machinery’s operation but also contribute to discomfort for operators.

4. Overloading: Misalignment can lead to uneven loading on the coupling and connected components, potentially causing overloading and damage.

5. Premature Failure: Continuous operation with misaligned couplings can accelerate wear and fatigue, leading to premature failure of the coupling and other components.

To resolve these challenges, proper alignment practices are crucial:

1. Regular Maintenance: Perform routine inspections to identify misalignment and other issues early, allowing for timely adjustments.

2. Precise Installation: Ensure accurate alignment during the installation process to prevent initial misalignment.

3. Laser Alignment: Use laser alignment tools for accurate and reliable alignment between shafts.

4. Corrective Measures: If misalignment is detected, take corrective actions promptly to restore proper alignment.

5. Balancing Loads: Distribute loads evenly across the coupling and connected components to prevent overloading.

By addressing misalignment challenges proactively and adopting appropriate maintenance practices, the longevity and performance of rubber couplings can be significantly improved, minimizing downtime and maintenance costs in industrial applications.

China high quality Quality SS304 Hydraulic Quick Coupler Pressure Rubber Hose Fitting Coupling  China high quality Quality SS304 Hydraulic Quick Coupler Pressure Rubber Hose Fitting Coupling
editor by CX 2023-09-05

China Professional Yox-250 Hydraulic Air Coupling Constant Filling Fluid Couplings coupling electrical

Product Description

Fluid coupling 

Product Application

Improve the starting capability of electric motor, protect motor against overloading, damp shock, load fluctuation and torsional vibration, and balance and load distribution in case of multimotor drives.Belt conveyers, csraper conveyers, and conveyers of all kinds Bucket elevators, ball mills, hoisters, crushers, excavators, mixers, straighteners, cranes, etc.

Main Features

1. Applies to flexible drive shaft ,allowing a larger axial radial displacement and displacement.
2.Has a simple structure,easy maintenance .
3.Disassembly easy
4.low noise
5.Transmission efficiency loss,long useful working life.

 

Related Products

       
Our Company

Ever-power Group specialist in making all kinds of mechanical transmission and hydraulic transmission like: planetary gearboxes, worm reducers, in-line helical gear speed reducers, parallel shaft helical gear reducers, helical bevel reducers, helical worm gear reducers, agricultural gearboxes, tractor gearboxes, auto gearboxes, pto shafts, special reducer & related gear components and other related products, sprockets, hydraulic system, vacuum pumps, fluid coupling, gear racks, chains, timing pulleys, udl speed variators, v pulleys, hydraulic cylinder, gear pumps, screw air compressors, shaft collars low backlash worm reducers and so on. furthermore, we can produce customized variators, geared motors, electric motors and other hydraulic products according to customers’ drawings.

We provides a reliable grantee for the product’ s quality by advanced inspection and testing equipment. professional technical team, exquisite processing technology and strict control system. 
In recent years, the company has been developing rapidly by its rich experience in production, advanced management system, standardized management system, strong technical force. We always adhere the concept of survival by quality, and development by innovation in science and technology. 
Our Group is willing to work with you hand in hand and create brilliance together! 

Material available
Low carbon steel, C45, 20CrMnTi, 42CrMo, 40Cr, stainless steel. Can be adapted regarding customer requirements.
Surface treatment
Blacking, galvanization, chroming, electrophoresis, color painting, …

 

Heat treatment
High frequency quenching heat treatment, hardened teeth, carbonizing, nitride, …
 
Certifications
FAQ:

Q: Are you trading company or manufacturer ?
A: Our group consists in 3 factories and 2 abroad sales corporations.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: How long is your delivery time ? What is your terms of payment ?
A: Generally it is 40-45 days. The time may vary depending on the product and the level of customization. For standard products, the payment is: 30% T/T in advance ,balance before shippment.

Q: What is the exact MOQ or price for your product ?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.Thus, MOQ and price may greatly vary with size, material and further specifications; For instance, costly products or standard products will usually have a lower MOQ. Please contact us with all relevant details to get the most accurate quotation.

If you have another question, please feel free to contact us.

Packing & Delivery
 

 

 

 

Type: Custom
Usage: Agricultural Products Processing, Farmland Infrastructure
Material: Custom
Power Source: Custom
Weight: Custom
After-sales Service: 5 Years

gearbox

Understanding the Different Types of Couplings

A coupling is a device that joins two rotating shafts together. It transmits power from one to the other and is designed to allow some amount of end-movement and misalignment. It is a simple mechanism that is extremely common in many industries. Learn more about couplings in this article.

Flexible coupling

When choosing the correct flexible coupling for your application, there are several factors to consider. One of the most important factors is backlash, which is the amount of rotational play introduced by moving parts. Other factors to consider include lubrication and accessibility for maintenance. Choosing the right flexible coupling can be challenging, but it is possible to find the right fit for your specific application.
A flexible coupling is an excellent choice for applications that require high alignment accuracy, which is essential for reliable system performance. These couplings can compensate for angular and parallel misalignment, ensuring proper positioning between the driving and driven shafts. In addition, flexible couplings are more affordable than most traditional couplings.
The most common flexible coupling is the elastomeric type, which uses a resilient material to transmit torque. These couplings can be made of plastic or rubber. In either case, they can be relatively lightweight compared to other types of couplings. Elastomeric couplings can also be used for high-speed applications.
Another important factor to consider when selecting the best Flexible Coupling is the pipe you’re connecting. Some couplings are easier to install than others, and some even have tapered edges to make them slide easily on the pipe. Regardless of the choice you make, it’s crucial to remember that proper installation is critical for reliability and safety.

CZPT coupling

An CZPT coupling is a flexible, mechanical coupling that features a high degree of angular misalignment and eccentricity. They are available in different lengths, with MOL being the longest. They are ideal for applications that involve high parallel misalignment, limited assembly access, electrical insulation, and other conditions.
CZPT couplings are a versatile type of coupling, and they are often used to connect parallel shafts. They work by transmitting torque from one to the other using the same speed and rotation mechanism. They are available in various materials, including aluminum, brass, and polymers. In addition, they can work under high temperatures.
One of the main benefits of using an CZPT coupling is the fact that it does not require the use of a gearbox. These couplings are flexible, and their design allows them to cope with misalignment problems that may occur in power transmission applications. They are also able to absorb shock.
Another advantage of CZPT couplings is that they are suitable for systems with low-to-medium amounts of shaft misalignment. Because their friction is limited to the surface of the hubs, they are able to accommodate low bearing loads. CZPT couplings can also be used in systems with limited shaft access, since the disks are easily removed.

Clamped coupling

Clamped couplings are designed to provide a high-strength connection between two objects. A standard coupling has two parts: a nipple and a clamp sleeve. Each part is designed in such a way as to cooperate with each other. The sleeve and clamp are made of rubber. A reinforcing braid is often used to protect the exposed steel braid from rusting.
PIC Design provides a wide variety of standard clamping couplings for many different industries. These include medical, dental, military, laboratory, and precision industrial control equipment. They have a simple design that makes them ideal for these applications. Clamped couplings are also available for custom manufacturing. These couplings are available in metric, inch, and Metric.
The most common type of clamp coupling is a hose clamp. This type of coupling is used to connect two hoses or piping units. It consists of two conical binding sleeves that fit into the ends of the two parts. The coupling is then tightened with a screwdriver. It’s a versatile coupling because it allows two piping units or hoses to be joined together.
Another type of clamp coupling is the two-piece clamp coupling. The two-piece design allows for a quick and easy installation. Unlike other types of couplings, the clamp coupling is not necessary to remove the bearings before installing it. Its keyway is designed with shims in place so that it fits over the shaft. These couplings are available in different sizes, and they are made of steel or dutile iron.
gearbox

Helicoidal coupling

Helicoidal coupling is a form of nonlinear coupling between two molecules. It occurs when the molecules in a double helix are subjected to oscillations. These oscillations can occur either in the right or left-handed direction. These oscillations are called solitons. Helicoidal coupling can provide quantitative or qualitative support to a structure, such as an electron.

Split Muff coupling

The Split-Muff Coupling market report provides detailed market analysis and key insights. The study covers the market size, segmentation, growth and sales forecast. It also examines key factors driving the market growth and limiting its development. The report also covers current trends and vendor landscapes. Therefore, you can get a deep understanding of the Split-Muff Coupling industry and make the right business decisions.
The report also provides data on the competitive landscape and the latest product and technology innovations. It also provides information on market size, production and income. It also covers the impact of the COVID-19 regulations. The market report is a valuable resource for companies looking to expand their businesses, or to improve existing ones.
In terms of application, Split-Muff Couplings can be used in light to medium duty applications. They are shaped like a semi-cylindrical disc that fits over a shaft. Both parts are threaded for assembly and disassembly. It can be disassembled easily and quickly, and can be used for medium to heavy-duty applications with moderate speeds.
Split Muff couplings are the most popular type of couplings for transferring wet and abrasive materials. Their flanged end fits on most major brands of smooth material muff hoses. In addition, this type of coupling is corrosion-resistant and easy to install. It also does not require any adjustments to the drive shaft’s position.
gearbox

Flexible beam coupling

The Flexible beam coupling is one of the most popular types of couplings in the industry. It is comprised of two sets of parallel coils separated by a solid member, and it offers a wide range of torsional stiffness. These couplings are made of aluminum alloy or stainless steel. They offer excellent flexibility and are less expensive than many other types of couplings. They also require zero maintenance and can tolerate shaft misalignment.
Beam couplings are categorized into two types: helical and axial. The former is characterized by a high degree of flexibility, while the latter is used to compensate for higher misalignment. Both types are suitable for small torque applications and are available in a wide range of shaft sizes.
Flexible beam couplings are available in metric and US sizes, and feature a variety of options. They feature stainless steel or aluminum materials and are highly durable and corrosion-resistant. They also offer high torque capacities and excellent fatigue resistance. Flexible beam couplings are available with a wide range of options to meet your unique application needs.
China Professional Yox-250 Hydraulic Air Coupling Constant Filling Fluid Couplings   coupling electricalChina Professional Yox-250 Hydraulic Air Coupling Constant Filling Fluid Couplings   coupling electrical
editor by CX 2023-07-13

China OEM Bsp Male Hydraulic Quick Coupling coupling constant

Product Description

Product name: Hydraulic fitting/ hydraulic adapter/ Interlock hose fitting/hydraulic pipe fitting/ steel fitting/
Hose part/ Hose nipple/ hydraulic coupler/ SS fitting
1. Raw Material: Carbon Steel & Stainless Steel available
2. Standard Plating: Trivalent Zinc Plating ( Cr3 / Chrome Free ), Silver & Yellow
3. Salt Spray Test: > 72 Hours ( If customer have higher requirement, we can also do with 200 Hours )
4. Packing: Products are protected with the plastic caps and then packed in carbon box.
5. OEM Service: Available. Customer only need to provide the product drawing or samples.
6. Sample. Please contact our sales person for the free sample.

We specialized in exploiting, manufacturing and selling fluid flow systerm. Dingfeng products includes: All kinds of hydraulic hose fittings, adapters, hydraulic hose, high pressure hose assemblies and other metal parts, as well as the agent for related fluid joint products. We also provide OEM service.
These products are mainly used in aerospace, automotive, shipbuilding, medicine, chemicals, petroleum and other areas

Pressure: High Pressure
Work Temperature: High Temperature
Thread Type: Internal Thread
Installation: Flared Type
Material: Carbon Steel
Type: Hydraulic Power Units
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gearbox

Functions and Modifications of Couplings

A coupling is a mechanical device that connects two shafts and transmits power. Its main purpose is to join two rotating pieces of equipment together, and it can also be used to allow some end movement or misalignment. There are many different types of couplings, each serving a specific purpose.

Functions

Functions of coupling are useful tools to study the dynamical interaction of systems. These functions have a wide range of applications, ranging from electrochemical processes to climate processes. The research being conducted on these functions is highly interdisciplinary, and experts from different fields are contributing to this issue. As such, this issue will be of interest to scientists and engineers in many fields, including electrical engineering, physics, and mathematics.
To ensure the proper coupling of data, coupling software must perform many essential functions. These include time interpolation and timing, and data exchange between the appropriate nodes. It should also guarantee that the time step of each model is divisible by the data exchange interval. This will ensure that the data exchange occurs at the proper times.
In addition to transferring power, couplings are also used in machinery. In general, couplings are used to join two rotating pieces. However, they can also have other functions, including compensating for misalignment, dampening axial motion, and absorbing shock. These functions determine the coupling type required.
The coupling strength can also be varied. For example, the strength of the coupling can change from negative to positive. This can affect the mode splitting width. Additionally, coupling strength is affected by fabrication imperfections. The strength of coupling can be controlled with laser non-thermal oxidation and water micro-infiltration, but these methods have limitations and are not reversible. Thus, the precise control of coupling strength remains a major challenge.

Applications

Couplings transmit power from a driver to the driven piece of equipment. The driver can be an electric motor, steam turbine, gearbox, fan, or pump. A coupling is often the weak link in a pump assembly, but replacing it is less expensive than replacing a sheared shaft.
Coupling functions have wide applications, including biomedical and electrical engineering. In this book, we review some of the most important developments and applications of coupling functions in these fields. We also discuss the future of the field and the implications of these discoveries. This is a comprehensive review of recent advances in coupling functions, and will help guide future research.
Adaptable couplings are another type of coupling. They are made up of a male and female spline in a polymeric material. They can be mounted using traditional keys, keyways, or taper bushings. For applications that require reversal, however, keyless couplings are preferable. Consider your process speed, maximum load capacity, and torque when choosing an adaptable coupling.
Coupling reactions are also used to make pharmaceutical products. These chemical reactions usually involve the joining of two chemical species. In most cases, a metal catalyst is used. The Ullmann reaction, for instance, is an important example of a hetero-coupling reaction. This reaction involves an organic halide with an organometallic compound. The result is a compound with the general formula R-M-R. Another important coupling reaction involves the Suzuki coupling, which unites two chemical species.
In engineering, couplings are mechanical devices that connect two shafts. Couplings are important because they enable the power to be transmitted from one end to the other without allowing a shaft to separate during operation. They also reduce maintenance time. Proper selection, installation, and maintenance, will reduce the amount of time needed to repair a coupling.
gearbox

Maintenance

Maintenance of couplings is an important part of the lifecycle of your equipment. It’s important to ensure proper alignment and lubrication to keep them running smoothly. Inspecting your equipment for signs of wear can help you identify problems before they cause downtime. For instance, improper alignment can lead to uneven wear of the coupling’s hubs and grids. It can also cause the coupling to bind when you rotate the shaft manually. Proper maintenance will extend the life of your coupling.
Couplings should be inspected frequently and thoroughly. Inspections should go beyond alignment checks to identify problems and recommend appropriate repairs or replacements. Proper lubrication is important to protect the coupling from damage and can be easily identified using thermography or vibration analysis. In addition to lubrication, a coupling that lacks lubrication may require gaskets or sealing rings.
Proper maintenance of couplings will extend the life of the coupling by minimizing the likelihood of breakdowns. Proper maintenance will help you save money and time on repairs. A well-maintained coupling can be a valuable asset for your equipment and can increase productivity. By following the recommendations provided by your manufacturer, you can make sure your equipment is operating at peak performance.
Proper alignment and maintenance are critical for flexible couplings. Proper coupling alignment will maximize the life of your equipment. If you have a poorly aligned coupling, it may cause other components to fail. In some cases, this could result in costly downtime and increased costs for the company.
Proper maintenance of couplings should be done regularly to minimize costs and prevent downtime. Performing periodic inspections and lubrication will help you keep your equipment in top working order. In addition to the alignment and lubrication, you should also inspect the inside components for wear and alignment issues. If your coupling’s lubrication is not sufficient, it may lead to hardening and cracking. In addition, it’s possible to develop leaks that could cause damage.
gearbox

Modifications

The aim of this paper is to investigate the effects of coupling modifications. It shows that such modifications can adversely affect the performance of the coupling mechanism. Moreover, the modifications can be predicted using chemical physics methods. The results presented here are not exhaustive and further research is needed to understand the effects of such coupling modifications.
The modifications to coupling involve nonlinear structural modifications. Four examples of such modifications are presented. Each is illustrated with example applications. Then, the results are verified through experimental and simulated case studies. The proposed methods are applicable to large and complex structures. They are applicable to a variety of engineering systems, including nonlinear systems.
China OEM Bsp Male Hydraulic Quick Coupling   coupling constantChina OEM Bsp Male Hydraulic Quick Coupling   coupling constant
editor by CX 2023-06-08