Product Description
Product Description
Flexible couplings are used to transmit torque from 1 shaft to another when the 2 shafts are slightly misaligned. It can accommodate varying degrees of misalignment up to 3°. In addition to allowing for misalignment, it can also be used for vibration damping or noise reduction.
Encoder couplings, flexible coupling, couplings working with Encoder & all kinds of motors (servo motor, DC motor, AC motor, gear motors).
MODEL |
OD(mm) |
Length(mm) |
Bore range(mm) |
JM14 |
14 |
22 |
3-7 |
JM14C |
14 |
22 |
3-6 |
JM16 |
16 |
22 |
3-7 |
JM16C |
16 |
22 |
3-7 |
JM20 |
20 |
30 |
4-10 |
JM20C |
20 |
30 |
4-10 |
JM25 |
25 |
34 |
4-12 |
JM25C |
25 |
34 |
4-12 |
JM30 |
30 |
35 |
5-16 |
JM30C |
30 |
35 |
5-16 |
JM40 |
40 |
66 |
8-24 |
JM40C |
40 |
66 |
8-24 |
JM55 |
55 |
78 |
10-28 |
JM55C |
55 |
78 |
10-28 |
JM65 |
65 |
90 |
12-38 |
JM65C |
65 |
90 |
12-38 |
JM80 |
80 |
114 |
16-45 |
JM80C |
80 |
114 |
16-45 |
JM95 |
95 |
126 |
20-55 |
JM95C |
95 |
126 |
20-55 |
JM105 |
105 |
140 |
20-62 |
JM105C |
105 |
140 |
20-62 |
JM120 |
120 |
160 |
20-74 |
JM120C |
120 |
160 |
20-74 |
JM135 |
135 |
185 |
22-80 |
JM135C |
135 |
185 |
22-80 |
“C” means clamp type jaw coupling Without “C” means setscrew type jaw coupling |
application
Packaging & Shipping
Company Profile
Related product
Diagnosing and Troubleshooting Rubber Coupling Issues
Diagnosing and troubleshooting problems with rubber couplings in machinery systems involves a systematic approach:
- Visual Inspection: Check for signs of wear, cracking, or deformation in the rubber elements.
- Vibration Analysis: Monitor vibration levels using sensors to identify excessive vibrations or irregular patterns.
- Noise Assessment: Listen for unusual noises during operation, which could indicate misalignment or worn components.
- Temperature Check: Monitor the operating temperature of the coupling, as overheating might indicate issues.
- Alignment Check: Ensure proper alignment between connected shafts to prevent excessive stress on the coupling.
- Torque Measurement: Measure the transmitted torque to identify any discrepancies from the expected values.
- Dynamic Testing: Conduct dynamic tests with load variations to identify performance issues.
- Comparative Analysis: Compare coupling behavior to baseline performance data.
If any issues are identified, they should be promptly addressed through proper maintenance, realignment, or replacement of damaged components.
Signs of Wear or Deterioration in Rubber Couplings
Rubber couplings can show signs of wear and deterioration over time due to factors like torque, temperature, and environmental conditions. To identify potential issues, watch out for the following signs:
- Visible Cracks or Damage: Inspect the rubber element for visible cracks, tears, or physical damage. Such issues can weaken the coupling’s torque transmission and vibration damping capabilities.
- Reduced Flexibility: Stiff or less flexible rubber indicates material degradation, which can impact the coupling’s ability to accommodate misalignment and absorb vibrations.
- Increased Vibrations: Excessive machinery vibrations may suggest worn-out rubber couplings. Deterioration of the rubber diminishes its vibration dampening properties.
- Unusual Noises: Any unusual sounds like squeaking or knocking might point to improper rubber coupling function and the need for inspection.
- Altered Performance: Decline in machinery performance, such as reduced torque transmission or higher energy consumption, can indicate coupling wear.
Regular inspections, visual checks, vibration analysis, and performance monitoring can help detect wear and deterioration early. This enables timely replacement and avoids operational problems.
Transmitting Torque and Damping Vibrations with a Rubber Coupling
A rubber coupling utilizes its flexible rubber element to achieve both torque transmission and vibration damping:
1. Torque Transmission: The rubber element connects two hubs, which are attached to the input and output shafts. As the input shaft rotates, it causes the rubber element to deform due to the applied torque. This deformation creates a shearing action within the rubber material, transmitting torque from the input to the output shaft.
2. Vibration Damping: The flexible rubber element of the coupling acts as a vibration isolator. When the coupling experiences external vibrations or shocks, the rubber absorbs the energy and dampens the vibrations before they reach the output shaft. The rubber’s elasticity and damping properties help mitigate vibrations and reduce the impact on the connected machinery, enhancing overall system performance and longevity.
This combination of torque transmission and vibration damping makes rubber couplings suitable for applications where misalignment compensation, shock absorption, and dampening of vibrations are essential, such as in pumps, compressors, HVAC systems, and various industrial machinery.
editor by CX 2023-09-22