China factory Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling

Product Description

Flexible Coupling Rubber Spider Insert Lovejoy L-type Hydraulic Jaw Coupler L series jaw type flexible coupling
 

Features

1. Split in half design for simple installation, maintaining free
2. High misalignment capacity
3. Facility protection for a twirl, twist, impact, and abrasion
4. No lubrication for polyurethane flex element 
5. Available for bore-to-size hubs and taper lock bushes
6. Low noise 

 

Product Description

Size

Type

A

B

D

E

Standard

Metric bore

Inch bore

bore

Min

Max

Min

Max

L035

1

16

20.5

6.6

/

3

3

8

1/8″

3/8″

L050

1

28

43.2

15.6

/

6

6

15

3/16″

5/8″

L070

1

35

50.8

19

/

9

9

19

3/16″

3/4″

L075

1

45

54.7

21

/

9

9

25

3/16″

1″

L090

1

54

54.7

21

/

9

9

28

3/16″

1 1/8″

L095

1

54

63.7

25.5

/

9

9

28

3/8″

1 1/8″

L099

1

64.5

72.5

27

/

12

12

35

7/16″

1 3/8″

L100

1

64.5

88.5

35

/

12

12

35

7/16″

1 3/8″

L110

1

85

108

43

/

15

15

48

1/2″

1 7/8″

L150

1

96

115.4

45

/

15

15

48

5/8″

1 7/8″

L190

2

115

133.4

54

101.6

19

19

55

5/8″

2 1/4″

L225

2

127

153.4

64

108

19

19

65

3/4″

2 5/8″

 

Related Products

 

 

Company Profile

 

FAQ

Q: How to ship to us?
A: It is available by air, by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rubber coupling

Minimizing Resonance and Improving Machinery Performance with Rubber Couplings

A rubber coupling can play a significant role in minimizing resonance and enhancing the overall performance of machinery by effectively damping vibrations and reducing the risk of resonance-related issues. Resonance is a phenomenon where a mechanical system’s natural frequency matches the frequency of external vibrations, leading to amplified oscillations and potential damage.

The following ways illustrate how rubber couplings contribute to minimizing resonance and improving machinery performance:

  • Vibration Damping: Rubber couplings utilize the inherent damping properties of elastomers to absorb and dissipate vibrations generated during operation. These vibrations can include those caused by unbalanced loads, eccentricities, or other disturbances. By damping these vibrations, rubber couplings prevent them from building up and causing resonance.
  • Vibration Isolation: Rubber couplings act as isolators by decoupling the connected components from each other. This isolation prevents vibrations from being transmitted directly from one component to another, thereby reducing the potential for resonance to occur.
  • Misalignment Compensation: Rubber couplings can accommodate misalignments between shafts, which often contribute to excessive vibrations. By allowing a certain degree of misalignment, the coupling prevents additional forces that could trigger resonance.
  • Reduced Stiffness: The flexibility of the elastomer elements in rubber couplings can reduce the overall stiffness of the system. A lower stiffness helps avoid the amplification of resonance by allowing some deformation of the coupling under varying loads and conditions.
  • Dynamic Absorption: Rubber couplings are effective at absorbing dynamic loads, including sudden shocks or impacts. These dynamic events can excite resonance, and the coupling’s ability to absorb and disperse such forces helps prevent resonance-related issues.

By effectively dampening vibrations, isolating components, and accommodating misalignments, rubber couplings can help minimize the risk of resonance-related problems. Engineers and designers must carefully select the appropriate rubber coupling type, elastomer material, and design to match the specific machinery and operating conditions, thereby ensuring improved machinery performance and longevity.

rubber coupling

Common Rubber Materials Used in Manufacturing Rubber Couplings

Various rubber materials are used in the manufacturing of rubber couplings, each chosen based on its specific properties and the intended application:

  • Neoprene: Known for its oil and chemical resistance, neoprene rubber is used in couplings that require durability and resistance to harsh environments.
  • Nitrile: Nitrile rubber offers excellent oil and fuel resistance, making it suitable for applications in machinery that involve contact with lubricants.
  • Natural Rubber: Natural rubber provides good elasticity and flexibility, making it suitable for couplings requiring high levels of shock and vibration absorption.
  • EPDM: Ethylene Propylene Diene Monomer (EPDM) rubber offers good resistance to weather, ozone, and aging, making it suitable for outdoor or high-temperature applications.
  • Polyurethane: Polyurethane rubber offers high abrasion resistance and can handle higher load capacities, making it suitable for heavy-duty applications.

The choice of rubber material depends on factors such as the operating environment, chemical exposure, temperature range, flexibility requirements, and load conditions. Engineers select the appropriate rubber material to ensure the coupling’s performance and longevity in specific applications.

rubber coupling

Role of Rubber Flexibility in Accommodating Misalignment

Rubber couplings are designed with a flexible element, usually made of elastomers, that plays a crucial role in accommodating misalignment between connected shafts. The flexibility of the rubber element allows it to deform and absorb angular, axial, and radial misalignments, providing several benefits:

1. Angular Misalignment: When the input and output shafts are not perfectly aligned in terms of angle, the rubber element can flex and twist, allowing the coupling to transmit torque even when the axes are not parallel.

2. Axial Misalignment: Axial misalignment occurs when the shafts move closer together or farther apart along their axis. The rubber element can compress or extend, adjusting the distance between the shafts without hindering torque transfer.

3. Radial Misalignment: Radial misalignment refers to the offset between the centers of the shafts. The rubber element can bend in response to radial displacement, ensuring that the coupling remains operational while accommodating the offset.

This flexibility not only enables the rubber coupling to handle misalignment but also helps prevent excessive stress on the connected machinery. By absorbing shock loads and distributing forces, the rubber element reduces wear and tear on components and minimizes the risk of premature failure.

In essence, the rubber’s flexibility in the coupling acts as a buffer against misalignment-induced stresses, contributing to smoother operation, improved longevity, and reduced maintenance in mechanical systems.

China factory Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling  China factory Flexible Coupling Rubber Spider Insert Lovejoy L-Type Hydraulic Jaw Coupler L Series Jaw Type Flexible Coupling
editor by CX 2024-04-15